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Direct observation of critical fluctuations 
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Abstract. By performing careful observations very near the critical point of binary fluids or 
microemulsions using an optical microscope, i t  is possible to obtain a resolution of the order 
of the correlation length and observe fluctuations in the order parameter (concentration). 
The origin of these fluctuations is discussed by comparing the picture element to a spin block 
variable within 3D king model. It follows that the free energy of the configuration can be 
obtained from the histogram of the fluctuation amplitudes. Black and white domains can be 
defined by clipping these fluctuations relative to a mean value. Domains are seen to be self- 
similar in shape, with a fractal dimension of 2.8. The origin of this self-similarity is discussed 
and a possible relation with percolation models is envisaged. 

1. Introduction 

The behaviour of fluids and fluid mixtures, which belong to the same universality class 
as the 3~ Ising model, has been much investigated and has led to a deep understanding 
of critical behaviour [l] ,  From experimental methods, however, only spatially averaged 
information can be obtained. The order parameter fluctuations are investigated through 
their correlation function or equivalently through their structure factor S(k)  (here k is a 
wavevector). The typical length E (the ‘correlation length’) at which S ( k g )  takes the 
value 1 is used as a measurement of the approach of the critical point. Although the static 
statistical properties of critical fluctuations are well known, as are, to a lesser extent, the 
corresponding dynamical properties, no reliable local investigation method is available. 
A pioneering attempt by Debye and Jacobsen [2] was performed in the late 60s. They 
used aphase-constrast microscope to observe, in direct space, concentration fluctuations 
that develop near the critical point of a polymer-solvent system of polystyrene and 
cyclohexane. They immersed both the microscope and the sample in an air thermostat 
which was controlled to within 50.02K; this thermal accuracy did not allow clear 
separation of the critical fluctuations from the onset of phase separation. No images 
were reported. 

We believe that the local and direct observation of critical fluctuations should eluci- 
date some aspects of critical phenomena. For instance, it becomes possible to study the 
statistics of such fluctuations, whose high degree of correlation would allow the Wilson 
effective free energy to be measured. The morphology of these fluctuations is striking, 
and the measure of a fractal exponent would provide new insight into the possible 
connection between thermal and percolation critical points, where the fluctuations are 
considered as domains percolating at T,. 
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Figure 1. Schematic diagram of the apparatus. 
CL: sample cell containing the binary fluid; WB: 
water bath for temperature control; WL: white 
lamp source; L, ,  L2: lenses; L3: high-quality, 
large-aperture objective; F': focus of L,; P,:  pin- 
hole; PO: plane of the object, whose image is in 
PO'; 0: point object in PO, whose image is at 0 ' ;  
--- : path of the direct light, with transmitted 
field E,; -: path of the scattered light, with 
scattered field Es. 

There are also a number of problems of current interest that could be studied. The 
two, four-point correlation functions could be determined; the statics and dynamics of 
fluctuations under an external field (shear flow, thermal gradient, gravity. . .), at a 
solid-mixture interface or between the two phases below T, could be investigated. 
Dynamics related to a distribution of length scales (stretched exponential) could also be 
investigated [ 3 ] .  

2. Experimental details 

Binary liquids were used because they allow a close approach to T, to be made without 
noticeable gravity effects. Thermal stabilization was of the order 20.2 mK over a few 
hours, and was provided by a water bath. A magnified image of the bulk system was 
directly formed on the sensitive photocathode of a video camera (figure 1). The ultimate 
optical resolution (one pixel) corresponds to 1 pm in the sample. For this resolution 
the field of view is of the order of 250 pm. The large aperture angle of the lens (-90") 
ensured that the image was the projection of the bulk within a layer whose thickness was 
of the order of the resolution limit. The image was therefore simply a section of the bulk 
sample. 

The cell was illuminated by a nearly parallel white light beam (figure l) ,  whose 
temporal coherence length was of the order of one pm. The image of the refractive index 
fluctuations &(r, t )  can be interpreted as being formed by the interference of the 
transmitted beam (E,) with the light scattered by the above fluctuations ( E s ) .  

The fact that (6n2)  increases near T, makes E,  increase, so the contrast % of the above 
fluctuations becomes larger. This contrast decreases with T - T,. The intensity detected 
on the video camera plane (x ,  y )  can be thus written as 

i ( ~ , y ) x  lEo12 + E o E s ( x , y ) ~  1 + % ( T - T , ) 6 n ( x , y , z = ~ o , t ) .  (1) 

Here z = to denotes the coordinate of the section. Since the refractive index fluctations 
are proportional to the order-parameter fluctuations 6 M  (here the concentration fluc- 
tuations), equation (1) becomes 

i ( x ,  y )  = io + G i ( x , y ,  t )  (2) 

with 

6 i ( x ,  y ,  t )  x S M ( x ,  y ,  2 = t o ,  t )  ( 3 )  

where io is the average intensity 



Direct observation of criticalpucruarions SA 129 

Figure 2. Fluctuation pattern ( 0 )  before and (h) after digitization at two levels ( T  - T, = 
I mK). The largest dimension corresponds to 600ym. 

In terms of image analysis. the signal that is obtained is discrete and corresponds to 
the integration of (2) over a volume element U. This volume U corresponds roughly to 
one pixel in the image and is of the order of a few pixels (depth of field) in the direction 
z .  There is a time integration due to the video system during the scanning period T = 
40 ms. However. in the temperature range investigated, the minimum relaxation time 
is always larger than 40 ms, so the time integration has no influence. Therefore the useful 
signal at the pixel located at ( x i ,  y i )  is 

6 ( x i ,  yi, t )  0~ ( 6 M ( x ,  y ,  z = zo)? t)r> (4) 

where ( ) denotes a spatial average. 
The image, having been received by the camera, is stored on a videotape and later 

digitized with 64 levels (6 bits) and over 256 x 256 pixels. Typical images are shown in 
figure 2(a). A number of numerical treatments are then performed. 

A number of binary fluids have been investigated: nitrobenzene-n-hexane, lutidine- 
water, isobutyric acid-water, methanol-cyclohexane and its deuterated derivatives, and 
also a microemulsion of dodecane-pentanol-water-sodium-dodecyl sulphate. Fluc- 
tuations can be seen only in a range of concentration and temperature close to criticality: 
(c-c,) = 0-0.03, T - T, (mK) = 1-25. The dynamics of such fluctuations are striking; 
they develop and vanish at a rate that is function of their size and of temperature, in full 
agreement with critical dynamics [l] .  

3. Statistics of fluctuations and free energy 

On general grounds, the intensity distribution function P(cSi(xj, y j ,  I ) )  of a given dis- 
tribution 6 i ( x i , y j ,  t )  at time t = f , ,  (which we shall omit in the following since we deal 
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only with statics) which corresponds to a partition function Z and a dimensionless free 
energy F(Si(xi, y ; ) )  is defined as 

This experimental quantity can be related to the singular free energy of the real 
system near T, if one considers the renormalization trajectories in the renormalization- 
group theory [4]. Starting from a non-singular free energy, a renormalization over 
volume L3 leads to an energy singular in T - T,, and Gaussian statistics when L + E 
(trivial fixed point), except for T = T,. Our experiment, performed at a resolution L = 
1 pixel aE, therefore corresponds to an intermediate state on the renormalization 
trajectory. A deviation from the fixed point value can be reasonably expected. 

The analysis of P ( S i ) ,  i.e. of the histogram in (figure 3), shows that the probability 
distribution is Gaussian, with a temperature-dependent first moment: -log P - F = 
&(Si)*, with E = (T/T,) - 1, a prediction that can be compared with theory. 

4. Morphology of fluctuations 

Fluctuations can be considered as clusters or domains. A precise definition of these 
domains is not unambiguous, however (see below). The more obvious assumption is to 
call a domain the locus of connected pixels where the intensity i ( x j , y j )  exceeds an 
arbitrary value i,: 

This will separate the image into ‘white’ clusters (i 2 il) and ‘black’ clusters (i < i,). The 
more natural choice is, of course, to make i l  = io, the average value of the histogram of 
intensity levels (figure 3). 
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Figure 4. Self-similarity of fluctuation clusters: 
mass of clusters with respect to their gyration 
radii. Typical data at two temperatures are 
reported, with typical intensity thresholds in 
brackets. These are expressed as deviations from 
the average intensity in units of the fluctuation 

10 lo' ' histogram full width. Because all data overlap, 
they have been shifted by one decade for clarity. 

L., 
1 2  

GYRATION RADIUS Ipml 

Such domains are reported in figure 2. Each domain ( p )  is characterized by its centre 
of mass (x , ,  y,), (i) its mass 

m, = 2 1 = n pixels 
i E p  

(7) 

and (ii) its gyration radius 

The variation of mp with respect to R, is reported in figure 4. The fact that over 
more than three decades a linear relationship is obtained between log R,  and log m, 
demonstrates self-similarity. The associated fractal exponent df defined by 

m, - Rzf  (9) 

has been found, for i l  = io, to be df = 1.8 ? 0.1. Small clusters (smaller than 5 pm) were 
ignored. The final error accounts for the known sources of uncertainties and is much 
larger than the statistical deviation. This value did not vary systematically with tem- 
perature. Changing the threshold ( i l )  moves df to 1.7 and lowers the range of available 
gyration radius. 

The domains that have been analysed are in fact the planar sections of 3D domains. 
The relationship between a 3~ fractal object and its 2D section has been evoked by 
Mandelbrot [ 5 ] ;  the fractal dimension of the section (df) is related to the fractal dimension 
Df of the 3~ object through 

D f  = 1 + df. (10) 
This relationshipisobvious for dense domains. The fractal dimensionof the2Dprojection 
of a 3~ object has been studied by Tence et a l [6] .  When the thickness of the projection 
tends to zero, one recovers the above result. The fractal dimension of the critical 
fluctuations according to (10) is therefore Df = df + 1 = 2.8 ? 0.1. That such fluctuations 
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are fractal objects might appear to be very surprising. But this is not really so, as we will 
explain below. 

Fluctuations cannot be readily modelled by Ising clusters (i.e. a block of connected 
spins of the same magnetic sign). This has been proven by Coniglio and Klein [7]: Ising 
clusters can diverge as a result of a percolation mechanism, but the critical temperature 
of percolation differs from the thermal critical temperature and the exponents are not 
the same. In order to overcome this difficulty Coniglio and Klein have defined new 
clusters (called physical clusters) which obey new percolation rules and reproduce the 
usual Ising behaviour. 

Two questions have to be answered in order to link our experimental findings with 
the above arguments. Firstly, what is the expected fractal dimension for the Ising clusters 
and/or the physical clusters? The simplest argument [8] gives 

D f  = D - @ / U  e 2.5 (11) 

where D = 3, and the values /3 = 0.325 and I, = 0.63 are those of the 3D king model. 
This value is different from our result Df = 2.8. Note that the existence of fractal 
fluctuations is not in disagreement with the form of the structure factor at large k 

(12) S(k)  - k-'2-v' 

S ( k )  - K D f  (13) 

with 11 = 0.03 the universal Fisher exponent. For monodisperse fractals 

so a naive reasoning would give Df 
P(m) modifies this result. With t the associated exponent 

1.97. However, the distribution of mass of clusters 

P(m) - rn-T (14) 

S ( k )  - k - D d 3 - T ) .  (15) 

D f  = (2 - ~ ) / ( 3  - 5) E 2.5 

the structure factor at large k [9] is 

Comparison with equation (12) gives 

(16) 

when using the value t = 2.2 which is generally found in the 3D percolation problems 

Equation ( l l ) ,  however, has been recently questioned (for D = 2 )  by Stella and 
Vanderzande [ll] who have shown that more subtle arguments, relying on analogies 
with the Potts model, would invalidate Df = D - @ / U .  

The second question is: are the clusters that we observe Ising clusters or physical 
clusters? The distinction between Ising and physical clusters shows that pure geometrical 
correlation effects have to be removed in order to obtain the true critical behaviour. 
Coniglio and Klein [7] took this into account for 3D clusters. In our case, the experimental 
definition of the 2~ clusters mixes geometrical and thermal effects. Thus specific per- 
colation effects in 2~ should be relevant in our findings. The simplest fractal dimension 
for the D = 2 percolation problem is df = 1.9 [8] which happens to be close to our 
experimental result df = 1.8. 

Future experiments and theoretical work should clarify these points (more details 
can be found in [12] and [13]). 

[IO]. 
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Note that the definition of a critical cluster is also an important problem for the new 
type of Monte Carlo simulations [ 141, whose dynamics does not rely on the flip of a single 
spin but on the flip of a whole critical cluster. 
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